The Milky Way as a Case Study of Galactic Chemical Evolution

James W. Johnson PhD Candidate The Ohio State University AAS 241 January 11, 2023

What do we know?

Local age-metallicity relation not monotonic

• Migrated stars from inner galaxy

Fig. 3, Feuillet et al. (2018), MNRAS, 477, 2326

What do we know?

AAS 241

- Local age-metallicity relation not monotonic
 - Migrated stars from inner galaxy
- Local age-[α /Fe] relation monotonic
 - Limits burstiness of recent star formation?

Fig. 3, Feuillet et al. (2018), MNRAS, 477, 2326

What do we know?

AAS 241

- Local age-metallicity relation not monotonic
 - Migrated stars from inner galaxy
- Local age-[α /Fe] relation monotonic
 - Limits burstiness of recent star formation?

$[\alpha/Fe]$ -[Fe/H] bimodality

• Origin debated

Weinberg et al. (2022), ApJS, 260, 32

What do we know?

AAS 241

- Local age-metallicity relation not monotonic
 - Migrated stars from inner galaxy
- Local age-[α /Fe] relation monotonic
 - Limits burstiness of recent star formation?

$[\alpha/Fe]$ -[Fe/H] bimodality

• Origin debated

What do we know?

AAS 241

- Local age-metallicity relation not monotonic
 - Migrated stars from inner galaxy
- Local age-[α /Fe] relation monotonic
 - Limits burstiness of recent star formation?

$[\alpha/Fe]$ -[Fe/H] bimodality

• Origin debated

Weinberg et al. (2022), ApJS, 260, 32

Galactic Chemical Evolution

Evolutionary History

Chemical Content

The Origin of the Solar System Elements

Fig. 3, Johnson (2019), Science, 363, 474

THE OHIO STATE UNIVERSITY

AAS 241

One-Zone Models

Assume instantaneous mixing Take yields from stellar evolution models Apply timestep algorithm

The Milky Way: A Concentric Ring Model

Similar to

- Schönrich & Binney (2009)
- Minchev, Chiappini & Martig (2013, 2014)

Simulation-based stellar migration

Versatile Integrator for Chemical Evolution

vice 1.3.0

pip install vice 🕒

Details of disk models are input

- SFH, IMF, yields
- Annular zones, migration

All documentation available at https://vice-astro.readthedocs.io

Fig. 7, Johnson et al. (2022), MNRAS, 508, 4484

Fig. 7, Johnson et al. (2022), MNRAS, 508, 4484

Success: spatial dependence

- Failure: bimodality itself (both SFHs)
 - Descent from high $[\alpha/Fe]$ too slow?
 - SFR too high at mid $[\alpha/Fe]$?

Success: spatial dependence Failure: bimodality itself (both SFHs)

- Descent from high $[\alpha/Fe]$ too slow?
- SFR too high at mid $[\alpha/Fe]$?

Future work: "two-infall" model

Liam Dubay (Ohio State)

Combinations of SFHs and SN Ia DTDs that reproduce bimodality

Fig. 2, Spitoni et al. (2019), A&A, 623, 60

Recent burst increases [O/Fe] of young stars

• Not seen in the data

Mor et al. (2019):

• Evidence for starburst in Gaia

AAS 241

Age-[O/Fe]: The Impact of the SFH

Recent burst increases [O/Fe] of young stars

• Not seen in the data

Mor et al. (2019):

• Evidence for starburst in Gaia

Recent burst increases [O/Fe] of young stars

• Not seen in the data

Mor et al. (2019):

• Evidence for starburst in Gaia

AAS 241

Age-[O/H]: The Impact of the SFH

Support interpretation that old metal-rich stars migrated from inner Galaxy

Support interpretation that old metal-rich stars migrated from inner Galaxy

Solar annulus

• Both models reasonable

Support interpretation that old metal-rich stars migrated from inner Galaxy

Solar annulus

• Both models reasonable

Other Galactic regions

• No-burst model overpredicts ages

The Ohio State University

• Burst model better reproduces trend's shape

Ambiguous results

AAS 241

• Episodic SFH potentially more accurate

Key parameter in chemical evolution models

Establish trends in abundance ratios in our disk models

The Origin of the Solar System Elements

Fig. 3, Johnson (2019), Science, 363, 474

Key parameter in chemical evolution models

Establish trends in abundance ratios in our disk models

Poorly Understood

The Origin of the Solar System Elements

Fig. 3, Johnson (2019), Science, 363, 474

The Ohio State University

Key parameter in chemical evolution models

Establish trends in abundance ratios in our disk models

Poorly Understood

Emily Griffith (CU Boulder)

The Origin of the Solar System Elements

Fig. 3, Johnson (2019), Science, 363, 474

AAS 241

Nitrogen: theoretically difficult

- Third dredge-up
- Hot bottom burning

• Mixing

Fig. 3, Johnson et al. (2022), arxiv:2202.04666

Nitrogen: theoretically difficult

- Third dredge-up
- Hot bottom burning
- Mixing

Different trends of [N/O] with [O/H]

• Z-dep of yield

Fig. 6a, Johnson et al. (2022), arxiv:2202.04666

Normalization of [N/O]-[O/H] relation set by strength of yields and outflows

Slope of relationship requires $y_N \propto Z$

Fig. 6b, Johnson et al. (2022), arxiv:2202.04666

Variability in SFR source of scatter

Daniel Boyea – Carbon (Ohio State Undergraduate)

Miqaela Weller – Helium (Ohio State)

Fig. 6b, Johnson et al. (2022), arxiv:2202.04666

THE OHIO STATE UNIVERSITY

The Normalization of Stellar Yields

Come chat if you're interested!

Degenerate with how much gas a galaxy has exchanged with its surroundings

Primordially produced elements

- Cooke et al. (2022): helium isotopes
- Weinberg (2017): deuterium

Ryan Cooke (Durham)

David Weinberg (Ohio State)

AAS 241

James W. Johnson

Disrupted Dwarf Galaxies in the Stellar Halo

Come chat if you're interested!

Novel method of fitting one-zone models to data

Proof of concept application to *Gaia*-Sausage Enceladus and Wukong/LMS-1

Charlie Conroy (Harvard)

Metallicity-Dependent Type Ia Supernova Rates

Come chat if you're interested!

Combined

- Mass-metallicity relation
- Mass-SFH relation from semi-analytic model
- SN Ia delay-time distribution
- Prefactor computed from metallicity

Chris Kochanek (Ohio State)

Kris Stanek (Ohio State)

THE OHIO STATE UNIVERSITY

Come get an OSU Astronomy sticker!

Key Takeaways

Recent SFH of the Milky Way

• Ambiguous results comparing to age-[O/Fe] and age-[O/H] relations

• Combination of inside-out galaxy growth with radial migration is unsuccessful

GCE models can be used to constrain elemental yields

• Nitrogen: should increase ~linearly above some metallicity independent minimum

If you're also interested in dwarf galaxies, SN rates, or getting started with VICE, let's chat!

What is the Normalization of Elemental Yields?

Difficulty: strong degeneracy with strength of outflows

• Primary source and sink terms

$$\dot{M}_{x} = \sum_{i} Y_{x} - Z_{x} (\dot{M}_{\star} + \dot{M}_{out}) + \dot{M}_{return} + Z_{x,in} \dot{M}_{ir}$$
$$\dot{M}_{a} = \dot{M}_{in} + \dot{M}_{return} - \dot{M}_{\star} - \dot{M}_{out}$$

Fit mock sample drawn from one-zone GCE model with yields, outflows as free parameters

VICE on Slack

THE OHIO STATE UNIVERSITY

[N/O]-[O/H] relation ~universal across galactic environments

Fig. 1, Johnson et al. (2022), arxiv:2202.04666

