Chemical Evolution Models of the Milky Way with Radial Migration

The Ohio State University Department of Astronomy

James W. Johnson

June 25, 2020

In collaboration with: David Weinberg, Fiorenzo Vincenzo, Jonathon Bird, Thomas Quinn, Sarah Loebman

THE OHIO STATE UNIVERSITY

Galaxies Make Stars, Stars Make Metals

The Origin of the Solar System Elements

1 H		big bang fusion					cosmic ray fission 🛛 🔫									2 He	
3 Li	4 Be	mer	merging neutron stars 🏢					exploding massive stars 🗾					6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	dying low mass stars					exploding white dwarfs 👩					13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 Ac	90 Th	91 Pa	92 U											
Astronomical Image Cre hic created by Jennifer Johnson														Credits:			

Gra

Present-day chemistry encodes information on the nuclear reactions that occurred over a galaxy's history (i.e. stars & supernovae)

Here: O & Fe

- Core Collapse Supernovae
- Type Ia Supernovae

Figure: Johnson (2019), Science, 363, 474

Motivation: The Observed Data

The Age-Metallicity Relation

• Highest-Z stars in solar annulus statistically older than solar-Z stars

• Population of young, alpha-rich stars w/asteroseismic ages

Top: Feuillet et al. (2018) Fig. 3; Bottom: Silva-Aguirre et al. (2018) Fig. 10

Motivation: The Observed Data

Bimodality in [α /Fe] vs. [Fe/H] – most apparent ~5-9 kpc

Figure: Hayden et al. (2015), Fig. 4

Multizone + Hydro = Hybrid Model

Disk described as 250 pc annuli extending from R = 0 to 30 kpc

Star particles form and gas evolves in a given annulus according to conventional *one-zone* models of chemical evolution

Stars migrate between zones according to an *analog* from hydro simulation w/similar formation radius and time

Note: There are no gas flows

Impose Inside-Out Growth

"Linear-then-Exponential" star formation history at each radius

Kennicutt-Schmidt scaling describes scaling of star formation rate with surface density of gas

Yields stellar surface density that declines exponentially w/radius

Versatile Integrator for Chemical Evolution

The Origin of the Solar System Elements

Python package designed to handle highly complex chemical evolution models

Multizone features in development; will be released with upcoming papers – used for simulating this model

Nucleosynthetic yield tables included; users can construct their own for use in simulation regardless of previous yield studies

The Age-Metallicity Relation

All star particles with final radius in solar annulus (7 – 9 kpc) Predict O-rich stars to be statistically older than solar-O stars, but not for Fe Population of young, high [O/Fe] stars from large radii

Observational References: Feuillet et al. (2018, 2019); Silva Aguirre et al. (2018); Martig et al. (2016)

Variability in the SN Ia Rate

A star migrating one way is not necessarily balanced by another moving the other way *when weighted by their SN Ia rates*

At large radii: SN Ia rate considerably lower than expected given the star formation history for large portions of simulation

Population of stars that aren't alphaenhanced but iron-poor

$[\alpha/\text{Fe}]$ vs. [Fe/H]

Evolution of low-alpha sequence with radius well reproduced

Too many low-alpha stars at high |z|

Youngest stars form at lower left envelope of distribution

Observational Reference: Hayden et al. (2015)

$[\alpha/\text{Fe}]$ vs. [Fe/H]

Evolution of low-alpha sequence with radius well reproduced

Too many low-alpha stars at high |z|

Width of low-alpha sequence arises from migration

[O/Fe] Distributions at Constant [Fe/H]

Shift to low [O/Fe] with increasing radius as they should

Two populations most apparent between 5 and 9 kpc

Not exactly like Milky Way, but a bimodality nonetheless

Observational Reference: Hayden et al. (2015)

Conclusions

- Radial migration can produce an old, high [O/H] population of stars in solar neighborhood interestingly not seen for [Fe/H]
- Young, iron-poor stars arise due to the impact of radial migration on the SN Ia rate at different radii

- A bimodality in [O/Fe] at constant [Fe/H] can arise from migration
 - Could however be shaped by merger events, starbursts, etc.
 - Number of low-alpha stars at high |z| overpredicted
- VICE is publicly available and open-source!