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Galaxies Make Stars, Stars Make Metals

The Origin of the Solar System Elements Present-day chemistry encodes information
on the nuclear reactions that occurred over a
galaxy’s history (1.e. stars & supernovae)

|
ﬂ
11 12
Mg |

merging heutron stars /i

Here: O & Fe

® Core Collapse Supernovae

57 f 58 f so feo o1 [ 62 63ff 64 ff 5[ 6 67 68 70 | 7
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Tm Yb Lu
89 [ 90 | o1 § 92
Ac Th Pa U

Astronomical Image Credits:

Graphic created by Jennifer Johnson ESA/NASA/AASNova

® Type Ia Supernovae

Figure: Johnson (2019), Science, 363, 474



Motivation: The Observed Data

The Age-Metallicity Relation 05¢ e o
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Top: Feuillet et al. (2018) Fig. 3; Bottom: Silva-Aguirre et al. (2018) Fig. 10



Motivation: The Observed Data

Bimodality in [a/Fe] vs. [Fe/H] — most apparent ~5-9 kpc
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Figure: Hayden et al. (2015), Fig. 4
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Multizone + Hydro = Hybrid Model

Disk described as 250 pc annuli extending from
R =0 to 30 kpc

Star particles form and gas evolves in a given
annulus according to conventional one-zone
models of chemical evolution

Stars migrate between zones according to an
analog from hydro simulation w/similar

formation radius and time

Note: There are no gas flows



Impose Inside-Out Growth

“Linear-then-Exponential” star formation history at each radius

Kennicutt-Schmidt scaling describes scaling of star formation rate with surface

density of gas
Yields stellar surface density that declines exponentially w/radius

1 T I 1 1 1

Rgal [kp C]

Time [Gyr]

5
Time [Gyr]

Time [Gyr]



Versatile Integrator for Chemical Evolution

vme110

The Origin of the Solar System Elements

dying low mass stars E .
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Python package designed to handle highly
complex chemical evolution models
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Nucleosynthetic yield tables included; users
can construct their own for use in simulation
regardless of previous yield studies
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The Age-Metallicity Relation

All star particles with final radius in solar annulus (7 — 9 kpc)
Predict O-rich stars to be statistically older than solar-O stars, but not for Fe

Population of young, high [O/Fe] stars from large radui
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‘ Observational References: Feuillet et al. (2018, 2019); Silva Aguirre et al. (2018); Martig et al. (2016)



Variability in the SN Ia Rate
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la/Fe]l vs. [Fe/H]
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Observational Reference: Hayden et al. (2015)



la/Fe]l vs. [Fe/H]
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|O/Fe] Distributions at Constant [Fe/H]
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Conclusions

Radial migration can produce an old, high [O/H] population of stars in solar
neighborhood — interestingly not seen for [Fe/H]

Young, iron-poor stars arise due to the impact of radial migration on the SN Ia
rate at different radu

A bimodality in [O/Fe] at constant [Fe/H] can arise from migration
® Could however be shaped by merger events, starbursts, etc.

® Number of low-alpha stars at high |z| overpredicted

VICE 1s publicly available and open-source!




