Simulating the Chemical Responses to Starbursts

James W. Johnson University of California at Santa Cruz IMPS Seminar May 28, 2019

The Origin of the Solar System Elements

1 H		big bang fusion					cosmic ray fission										2 He
3 Li	4 Be	mer	ging r	neutro	n stars	?	exploding massive stars 🞑					5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	dying low mass stars					exploding white dwarfs 🧑					13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La 89	Ce	Pr	Nd	Pm	Sm 94	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

Pu

Np

Very radioactive isotopes; nothing left from stars

Astronomical Image Credits: ESA/NASA/AASNova

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/

Ac

Ра

Galaxy Josmic ray fission Cosmic ray fission Josmic ray fission J

Fe

76

Os

61

Pm

93

Np

Cr

42

Мо

W

Pr

91

Pa

43

Tc

75

Re

Nd

92

exploding massive stars 🞑

exploding white dwarfs 🌆

Ni

46

Pd

Co

45

Rh

Sm

94

Pu

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/

EVOID 12 meRing neutron stars?

39

Y

40

Zr

72 Hf

La

89

Ac

41

Nb

Та

58

Ce

90

Th

Ca

38

Sr

56

Ba

88

Ra

37

Rb

55

Cs

87

Fr

Astronomical Image Credits: ESA/NASA/AASNova

 \cap

S

34

Se

52

Те

10

Ne

Ar

36

Kr

54

Xe

86

Rn

35

Br

53

5

В

AI

Ga

In

Very radioactive isotopes: nothing

Zn

48

Cd

Cu

Si

32

Ge

50

Sn

D

33

As

Sb

Abundances

The Single-Zone Approximation

Fundamental Assumption: Spatial Homogeneity

- Eliminates need for N-body by construction
- Star formation, gas distribution, etc. all uniform
- Instantaneous mixing of metals in ISM gas
- Accuracy/sophistication vs. computational expense

The Single-Zone Approximation

Fundamental Assumption: Spatial Homogeneity

- Eliminates need for N-body by construction
- Star formation, gas distribution, etc. all uniform
- Instantaneous mixing of metals in ISM gas
- Accuracy/sophistication vs. computational expense

Adopt models for nucleosynthetic yields, SNe Ia delay-time distribution, star formation efficiency, etc.

• Initial value problem solved numerically with timestep algorithm

The Single-Zone Approximation

For a Given Element x

 $\dot{M}_{x} = \dot{M}_{CC} + \dot{M}_{Ia} + \dot{M}_{AGB} - Z_{x}\dot{M}_{*} - \xi_{enh}Z_{x}\dot{M}_{out} + \dot{M}_{r} + Z_{x,in}\dot{M}_{in}$

Gas Supply & Star Formation

$$\dot{M}_{gas} = \dot{M}_{in} - \dot{M}_{*} - \dot{M}_{out} + \dot{M}_{r}$$
 $\dot{M}_{*} = M_{gas}\tau_{*}^{-1}$

VICE: Versatile Integrator for Chemical Evolution

Python package built for running these simulations

Allows functions of time for many parameters

User-specified yields from CCSNe and SNe Ia

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

https://github.com/giganano/VICE.git

VICE: Versatile Integrator for Chemical Evolution

Python package built for running these simulations

Allows functions of time for many parameters

User-specified yields from CCSNe and SNe Ia

Bonus: implemented in C

https://github.com/giganano/VICE.git

Simulating Starburst Scenarios

VICE allows arbitrary functions of time to describe evolutionary parameters

Perfect for simulating highly non-linear parameter spaces

David Weinberg (OSU) The Impact of Starbursts on Element Abundance Ratios (Johnson & Weinberg 2019, in prep)

Simulating Starburst Scenarios

VICE allows arbitrary functions of time to describe evolutionary parameters

Perfect for simulating highly non-linear parameter spaces

Some Initial Questions

- How does a given abundance respond to different modes of starbursts?
- How do similar starbursts affect different elements? (Here: O, Fe, Sr)

David Weinberg (OSU) The Impact of Starbursts on Element Abundance Ratios (Johnson & Weinberg 2019, in prep)

Fiducial Starburst Models

Gas-Driven: short-timescale changes to the gas supply Tracks driven by lag between CCSNe and SNe Ia

Fiducial Starburst Models

Gas-Driven: short-timescale changes to the gas supply Tracks driven by lag between CCSNe and SNe Ia

Fiducial Starburst Models

Efficiency-Driven: short-timescale changes to star formation efficiency Tracks again driven by lag between CCSNe and SNe Ia

Delayed Outflows

Motivation

• What if outflows are sensitive to previous generations of stars?

 $\dot{M}_{out} = \eta(t) \left\langle \dot{M}_* \right\rangle_{\tau_s} = \frac{\eta(t)}{\tau_s} \int_{t-\tau_s}^t \dot{M}_*(t') dt' \to \eta(t) \, \dot{M}_* \, (\tau_s = 0)$

- SNe Ia contribute? Then $\tau_s \sim 1$ Gyr?
- Introduce new parameter: smoothing time

Delayed Outflows

Gas-Driven Scenario

- Delayed outflow => more stars at onset => higher [O/Fe]
- Subtle likely within observational errors

Delayed Outflows

Efficiency-Driven Scenario: *α* poor stars Period of slow star formation w/ongoing SNe Ia, strong outflows

Hybrid: Kennicutt-Schmidt $\dot{M}_* \propto \Sigma_g^N \Rightarrow M_g \tau_*^{-1} \propto \Sigma_g^N \Rightarrow \tau_*^{-1} \propto \Sigma_g^{N-1}$ $N = 1.4 \pm 0.15$ (Schmidt 1959, 1963; Kennicutt 1989, 1998)

Here: $\tau_*^{-1} = (2 \ Gyr)^{-1} \left(\frac{M_g}{6.0 \times 10^9 \ M_{\odot}}\right)^{0.3}$

Hybrid: Kennicutt-Schmidt

Gas-driven simple starburst also produces α -poor stars when $\tau_s \gtrsim 1$ Gyr

Hybrid: Kennicutt-Schmidt

Gas-driven simple starburst also produces α -poor stars when $\tau_s \gtrsim 1$ Gyr

If SNe Ia contribute to winds $=> \tau_s$ could be important

 $[Sr/Fe] \approx 0$ for...

[Sr/Fe] ≈ 0 for...
• 276 galactic disk stars

(Figure 8) Mishenina et al. (2019), MNRAS, 484, 3846

$[Sr/Fe] \approx 0$ for...

- 276 galactic disk stars
- 34 ETGs
- SDSS stacks (0.02 < z < 0.06)

(Figure 4) Conroy, van Dokkum & Graves (2013), ApJL, 763, 25

$[Sr/Fe] \approx 0$ for...

- 276 galactic disk stars
- 34 ETGs
- SDSS stacks (0.02 < z < 0.06)

Is this universal?

Different nucleosynthetic origins from Ba. What about Y and Zr?

(Figure 4) Conroy, van Dokkum & Graves (2013), ApJL, 763, 25

$[Sr/Fe] \approx 0$ for...

- 276 galactic disk stars
- 34 ETGs
- SDSS stacks (0.02 < z < 0.06)

Is this universal?

Different nucleosynthetic origins from Ba. What about Y and Zr?

Small r-process contribution to blame for scatter at [Fe/H] ≤ -2 ?

[Fe/H]

(Figure 8) Mishenina et al. (2019), MNRAS, 484, 3846

Sources: CCSNe, AGB stars • Small r-process contribution at [Fe/H] ≤ -2? (Mishenina+ 2019)

Yields from CCSNe depend strongly on Z

Not the case for oxygen

Sources: CCSNe, AGB stars • Small r-process contribution at [Fe/H] ≤ -2? (Mishenina+ 2019)

Yields from AGB stars also depend strongly on Z • Cristallo et al. (2011) (FRANEC) • Noticeable jump at $Z \approx 0.004$

From a Single Stellar Population
Constant y^{Sr}_{CC} for now

Sr produced before Fe at all Z

Qualitatively resembles Fe with exponential R_{Ia}

Strontium: An s-process Element Two regimes: CCSNe @ [Fe/H] ≤ -0.5 ; AGB otherwise

Fiducial Starbursts: Now with Strontium

Gas-Driven: Galaxy must re-enrich before Sr yields from AGB stars return to their pre-burst values

Fiducial Starbursts: Now with Strontium

Efficiency-Driven: No re-enrichment necessary => Sr yields from AGB stars increase immediately following onset

• Gas-Driven

- Produce bimodal [α/Fe] due to delayed onset of SNe Ia associated with the starburst
- Sensitivity to smoothing time within observational errors

• Gas-Driven

- Produce bimodal [α/Fe] due to delayed onset of SNe Ia associated with the starburst
- Sensitivity to smoothing time within observational errors
- Efficiency-Driven
 - Top-hat model produces α -rich and α -poor stellar populations
 - Sensitive to smoothing time: higher τ_s models produce more α -poor stars

• Gas-Driven

- Produce bimodal [α/Fe] due to delayed onset of SNe Ia associated with the starburst
- Sensitivity to smoothing time within observational errors
- Efficiency-Driven
 - Top-hat model produces α -rich and α -poor stellar populations
 - Sensitive to smoothing time: higher τ_s models produce more α -poor stars
- Combination: The Kennicutt-Schmidt Law

• α -poor stars produced when $\tau_s \gtrsim 1$ Gyr

• Gas-Driven

- Produce bimodal [α/Fe] due to delayed onset of SNe Ia associated with the starburst
- Sensitivity to smoothing time within observational errors
- Efficiency-Driven
 - Top-hat model produces α -rich and α -poor stellar populations
 - Sensitive to smoothing time: higher τ_s models produce more α -poor stars
- Combination: The Kennicutt-Schmidt Law
 - α -poor stars produced when $\tau_s \gtrsim 1$ Gyr
- Strontium
 - AGB component can be modeled as an exponential delay-time distribution
 - $[Sr/Fe] \approx 0 => Observations contain little if any information$
 - Nonetheless simulations tell us a lot about s-process/Z-dependent yields

Oscillatory Evolution

A potentially real effect introducing physical scatter Does not explain bimodality in Milky Way [α /Fe]

Moving Forward: Modeling with VICE CHemical Abundances Of Spirals (CHAOS) ~ Dozen low-redshift star-forming spirals C, N, O, Si, S abundances derived from HII region recombination lines MODS spectrograph at Large Binocular Telescope

Richard Pogge (OSU) Danielle Berg (OSU) John Moustakas (Siena)

Evan Skillman (MN)

Ness Mayker (OSU)

Moving Forward: Modeling with VICE

10 20 30 40 50 6 # STAR DENSITY $[\alpha/Fe]$ bimodality in Milky Way

Spitoni+ 2019: Calibrated two-infall model for O, Fe

Does the model change/fail with more elements and relaxed assumptions? Ness Mayker (OSU)

David Weinberg (OSU)

Moving Forward: Multizone Simulations

Zone

Inflows

Outflows

Attempt to capture mixing with similar zone modeling approach • Data: UW hydro simulation

Gas

Stars

Zone

David Weinberg (OSU)

• Gas-Driven

- Produce bimodal [α/Fe] due to delayed onset of SNe Ia associated with the starburst
- Sensitivity to smoothing time within observational errors
- Efficiency-Driven
 - Top-hat model produces α -rich and α -poor stellar populations
 - Sensitive to smoothing time: higher τ_s models produce more α -poor stars
- Combination: The Kennicutt-Schmidt Law
 - α -poor stars produced when $\tau_s \gtrsim 1$ Gyr
- Strontium
 - AGB component can be modeled as an exponential delay-time distribution
 - $[Sr/Fe] \approx 0 => Observations contain little if any information$
 - Nonetheless simulations tell us a lot about s-process/Z-dependent yields

 $\dot{M}_{x} = \dot{M}_{CC} + \dot{M}_{Ia} + \dot{M}_{AGB} - Z_{x}\dot{M}_{*} - \xi_{enh}Z_{x}\dot{M}_{out} + \dot{M}_{r} + Z_{x,in}\dot{M}_{in}$ $\dot{M}_{gas} = \dot{M}_{in} - \dot{M}_* - \dot{M}_{out} + \dot{M}_r$ $\dot{\mathrm{M}}_{*} = \mathrm{M}_{\mathrm{gas}} \tau_{*}^{-1}$ $\dot{M}_{out} = \eta(t) \langle \dot{M}_* \rangle_{\tau_s} = \frac{\eta(t)}{\tau_s} \int_{t-\tau_s}^t \dot{M}_*(t') dt' \to \eta(t) \dot{M}_* (\tau_s = 0)$ • $\dot{M}_* \propto \Sigma_q^N => M_q \tau_*^{-1} \propto \Sigma_q^N => \tau_*^{-1} \propto \Sigma_q^{N-1}$ • $N = 1.4 \pm 0.15$ (Schmidt 1959, 1963; Kennicutt 1989, 1998) • Here: $\tau_*^{-1} = (2 \ Gyr)^{-1} \left(\frac{M_g}{6.0 \times 10^9 \ M_{\odot}} \right)^{0.5}$
