
Basic Software Engineering 
SURP 2022 Python Bootcamp

Ohio State Astronomy 
Slides by: James W. Johnson



Software Engineering 

The application of the principles of engineering to software development. 

All of the usual principles apply
• Making efficient use of resources 
• Extensions of existing features 
• Testing of individual components 
• Maintenance 

Why care if you’re an astronomer? If you build anything substantially large, 
these principles can save you not just headaches but migraines. 



DRY: Don’t Repeat Yourself 

You should never write the same code twice within the same application. 

Always assume that every software component you write (no matter how 
well it performs) is wrong or bugged in some subtle, nuanced way 

• When you find a bug, you want to be able to fix it once and have that change 
propagate through the entire code base

Caveat: Some choose to break this rule for software written in a modular 
manner – that is, if each component of your software is implemented 
independently of the other components. In this case DRY applies within the 
individual modules. 



No Ifs, Ands, or Buts 

When describing the function fulfilled by a method, object, file, etc. you 
should be able to state it in a simple, declarative manner with no ifs, ands, or 
buts. 

If you can’t state it without an if, and, or but, then you need to split up that 
function/object/file/whatever it is into more than one component. 

This is a mnemonic for “every component should do exactly one thing.” 



Version Control

Cataloging of previous copies of a software’s source code 
• Popular tools: GitHub, Bitbucket 
• Command line: git 
• Keeps track of all previous changes to your code base for you 

The standard for public codes is to use the 3-digit system (e.g. 1.2.1, 2.3.0)
• First is for back-compatibility, second is for new features, third is for bug-fixes 

You don’t need to use GitHub/Bitbucket for version control – you can also 
store your code, plots, etc. there to manage copies between multiple systems. 
I also use it to share my research notes and plots with collaborators. 



GitHub

First and foremost: file-sharing system
• Keeps a catalog of the changes to your code 

over time, making it a great tool for version 
control for developers

For astronomers:
• Share with collaborators
• Manage files between multiple computers

Terminal: git [add, commit, pull, push, …]
• Their website will show you how to set up 

a repository



Minimization of Dependencies 

If the code base for your software uses another, external software (e.g. NumPy), 
that is called a dependency (your code depends on NumPy). 

It’s quite common to have a ~few dependencies, but too many is problematic. 

As of now my own python package (VICE) is ~90k lines of code. If one of its 
dependencies releases a new version with changes that affect my code, I have to 
go look at every file to ensure this doesn’t break anything. 

Advice: Don’t be afraid to write the small but challenging stuff yourself. 



Testing

Well-written software implements unit tests 
• A means of assigning Success/Failure/Skipped messages to the smallest possible 

components of a code base 

When you make a future change to your code base, this gives you an 
automated means of finding out if your change broke anything you weren’t 
expecting to break. 

This is as simple as actually saving the code you write to test a new 
component of your software, and the same for when you resolve an issue. 



Think Before You Write 

Many scientists just start writing functions when posed with a problem 
• This has its place and its usefulness within research 
• If you’re going to use some function >few times, I advise more thought 

If you’re going to be spending even as much as five minutes writing a given 
file, stop and ask yourself: What objects might be useful? What functions 
might be useful? 

There are many ways to write the same program, so don’t always settle for 
the first idea that comes into your head. You can usually improve upon the 
first thing that comes to mind. 



Think Before You Write 

This is how professional developers and 
software engineers view scientist-written code 



Rule Number One

Code is read much more often than it is written. 
• Advice: Assume this applies to all of the code you will ever write 

Emphasize readability above all else. It’s okay to break any of these rules if 
the result is a much more readable solution. 

Bottom line: Well-written code is clear, verbose, and does not cut corners. 
• Viewing code as a mere means to an end solves zero problems while causing many. 

That line is usually crossed long before a public release, and the solution is knowing 
how to engineer your code.


