
Classes
SURP 2022 Python Bootcamp

Ohio State Astronomy
Slides by: James W. Johnson

What are they? Why should I care?

A class is how you implement a new object.

Python is an object-oriented programming language - if you’re a python
programmer and you’ve never written a class, you’re missing out on the
single most powerful aspect of the language by far.

Recall: The Python Model

Everything is an object in Python, whether you knew it or not.

Objects have …
• Attributes
• Functions
• Data

… which are unique to the object; also interactions with other objects.

Data Container

The simplest object – all it does is
hold on to the attributes that you
give it

class container: pass is all you need
• Doesn’t need to be called container

The argument pass here means “do
nothing.” Objects with more
specialization instead have def
statements within them.

An Example Object: A Dog

Attributes: color, breed, name, gender

Functions: bark, roll over, shake, eat,
drink, chase their tail

Data: date of birth, veterinary records,
previous owners

Interactions with other objects: play
with other dogs/owner, chase cats

Dogs in Python

How you create instances of the class (i.e.
objects) is determined by the __init__
function.

The first argument to __init__ should always
be self – this is true of most functions in a
class, and refers to the object itself being
passed

Dogs in Python

How you create instances of the class (i.e.
objects) is determined by the __init__
function.

The first argument to __init__ should always
be self – this is true of most functions in a
class, and refers to the object itself being
passed

This gets the job done, but…

Dogs in Python

How you create instances of the class (i.e.
objects) is determined by the __init__
function.

The first argument to __init__ should always
be self – this is true of most functions in a
class, and refers to the object itself being
passed

This gets the job done, but it’s easily broken

Dogs in Python

Error-handling of attributes requires
property and setter functions

self._property is a conventional way of
storing self.property under the hood,
protected by error-handling

This throws a TypeError whenever the
user tries to set name or breed to
something other than a str

Dogs in Python

Error-handling of attributes requires
property and setter functions

self._property is a conventional way of
storing self.property under the hood,
protected by error-handling

This throws a TypeError whenever the
user tries to set name or breed to
something other than a str

A Quick Note: Property vs. Stored Data

Important: the name of a property is NOT related to the
variables stored as data by a class

• The connection between obj.x and obj._x is purely for
readability – if a value stored under the hood may be of use to
the user, it is simply convention to use x and _x

In this example, the values of certain properties are
calculated “on the fly” based only one value actually
stored as internal data

The @property decorator removes the need for parentheses

Dogs in Python

Classes can have functions too. These functions can have any number of subroutines, just
like other functions, and can access properties and other functions via self

The interpretation of self: refers to the instance of the class (x.func() is the same as
classname.func(x)). On line 4 here, I’ve passed snoopy to dog.speak as self.

Static Methods

Functions which are bound to the class and not the object of the class

Can’t access or modify the class

Implemented as part of a class because it makes sense to do so

Created with the @staticmethod decorator

Dogs in Python

An example static method: is_puppy
to determine if a dog is a puppy or
not.

Do not take self as an argument, and
are called with the name of the class

Class Methods

Like static methods, are bound to the class rather than objects of the class

Can access and modify class state, unlike static methods

Return an instance of the class (i.e. an object)

Created with the @classmethod decorator

Dogs in Python

An example class method: create Snoopy

They take the class as the first argument (cls)

Syntactic Sugar

A line of code which is interpreted the same as another, but is more readable

You’ve been using it all along, you just didn’t know it

To implement syntactic sugar, you as the programmer write functions with
specific names often referred to as “magic methods”

Syntactic Sugar

Can be used to emulate array-like indexing, item assignment, calling, and more

There are many other forms of syntactic sugar – here is a reference on many of the
magic methods you can implement: https://www.tutorialsteacher.com/python/magic-
methods-in-python

With Syntactic Sugar Without Syntactic Sugar
x[0] x.__getitem__(0)
x(0) x.__call__(0)

x[0] = 1 x.__setitem__(0, 1)
str(x) x.__str__() and x.__repr__()

https://www.tutorialsteacher.com/python/magic-methods-in-python

Example Usage of Syntactic Sugar: Polynomials

Goals:
• Properties: coefficients and the order of the polynomial
• Indexing – index i should return the i’th coefficient
• Calling – f(x) should evaluate the polynomial at the value of x
• Item Assignment – f[i] = a should assign the i’th coefficient to the value of a
• A string representation

Note: This object is scripted at examples/mypkg/mathlib/polynomial.py in
the git repository

A Polynomial Object

The first pieces of the implementation:
the __init__ function and the properties

A Polynomial Object

Indexing – requires __getitem__ function, which takes the index as a parameter

Calling – requires __call__ function, which takes any number of parameters
• Here it should be a value x to evaluate the polynomial at

A Polynomial Object

Item assignment – requires __setitem__ function, which takes the index and
the value to assign, in that order.

A Polynomial Object

A string representation – requires
__str__ and __repr__ functions, which
do slightly different things.

• __str__ is called when you type-cast to
a string

• __repr__ is called when you run a line
with just the object in ipython or a
notebook

A Polynomial Object

In action – the example has all of these
features because of the magic methods
implemented in the polynomial class

This is essentially a reimplementation of
NumPy’s poly1d object

Emulating Numeric Types

Another application of
syntactic sugar

There is also __rsub__ for -=,
__rmul__ for *=, __rdiv__ for
/=, etc., but unless otherwise
specified these lines will call
the corresponding function
without the r in the name.

With Syntactic Sugar Without Syntactic Sugar

x + y x.__add__(y)

x += y x.__radd__(y)

x - y x.__sub__(y)

x * y x.__mul__(y)

x / y x.__div__(y)

x // y x.__floordiv__(y)

x % y x.__mod__(y)

Emulating Numeric Types: A Polynomial

Extend the polynomial object to allow
addition, subtraction, and equivalence
comparison with other polynomials

Some extra useful syntactic sugar
elements in doing so:

With Syntactic Sugar Without Syntactic Sugar

+x x.__pos__()

-x x.__neg__()

x == y x.__eq__(y)

x != y x.__ne__(y)

Emulating Numeric Types: A Polynomial

Unary +: The same as the original polynomial

Unary -: Each coefficient is the negative of the original

Magic methods can return anything, hence the need to specifically create a
polynomial object. They don’t call __init__ automatically, so in theory you
can have them do whatever you want. Why isn’t this required for __pos__?

Emulating Numeric Types: A Polynomial

Adding polynomials: The coefficients of each power on x add

Emulating Numeric Types: A Polynomial

Subtracting polynomials: Use what we’ve already written to add the negative

Emulating Numeric Types: A Polynomial

Equivalence comparison: If two polynomials have the same coefficients, say that they
are equal to one another

Note: This __ne__ method actually isn’t necessary. If you write an __eq__ method, the
__ne__ method takes on this default form. Advice: If you ever override that, you
should have a good reason for doing so.

Emulating Numeric Types: A Polynomial

In action – x and y have all of these features
because of the magic methods we implemented

Features like this are also included in NumPy’s
poly1d object

Recall: Lists vs. Arrays

If it wasn’t already, it should now be fairly clear what we mean when we say
lists and arrays are different objects.

They are instances of different classes with different source code.

