
Inheritance & Composition
SURP 2022 Python Bootcamp

Ohio State Astronomy
Slides by: James W. Johnson

What Are They?

Inheritance
• An object is based on another object, is a special type of that object, or is some kind

of extension of it
• Subclasses “inherit” functionality from their parent class, which may have its own

parent class

Composition
• An object contains other objects, is made of them, and may not have meaning without

them

Inheritance

A classic example: Pets (the implementation of this is left for an exercise)

Features shared by all pets should be implemented in the pet base class. Those shared by
all cats but not dogs in the cat class. These features will be automatically included in all
subclasses (a.k.a. derived classes).

cat

pet

dog

spaniel shepherd bengal siamese

Inheritance: Students and Professors

First: A base class
• You need something to inherit from

Both can inherit from a base class
person storing the data any person
would have (e.g. their name).

So far this is all material from last
session.

Inheritance: Students and Professors

Next: A derived class

The derived class needs to call its parent class’s __init__
function, and inheritance is accomplished.

Here student objects have a property name which is
inherited from the person object.

Inheritance: Students and Professors

Next: A derived class

The derived class can have properties, functions,
etc. that is unique to that derived class.

Inheritance: Students and Professors

Next: Another derived class

A different derived class can have a function with
the same name executing a different task.

Inheritance: Students and Professors

The derived classes can also override inherited
functions or properties.

This can be used to create objects which share data
and do different things when you call the same
function.

Inheritance: Subclassing Built-Ins

Built-in data types can be subclassed too!

The __init__ functions of built-in types usually accept *args and **kwargs
as parameters

Immutable types will require overriding __new__ as opposed to __init__
• This includes int, float, bool, string, tuple, and range
• In practice you’ll only override __new__ in rare, specific instances
• We’ll see an example of this in a few slides

Sometimes inheriting built-in features can be very powerful

Inheritance: Subclassing Built-Ins

Example: subclass list to make a
simple array

Arrays differ from lists in that all
elements must be of the same
type.

Inheritance: Subclassing Built-Ins

In the example, a TypeError is
raised by __init__ if not all
elements are of the specified dtype.

Then override the inherited
__setitem__ to only accept the
specified dtype.

Note the reappearance of super – it
can be used anywhere to refer to an
inherited class or function.

Inheritance: Subclassing Built-Ins

All of the features and behavior of
the list are inherited, with the
modification that this only allows
integers

This Includes Exceptions and Warnings

You can create your own
Exception and Warning classes
by subclassing these built-in
types

Unless you want to do
something special, this only
requires two lines

Inheritance: Subclassing Built-Ins

Sub-classing immutable types requires
over-riding __new__ rather than
__init__ (example: positive int)

__new__ vs. __init__:
• __init__ must return None ; __new__

must return the object
• cls versus self as first parameter
• __new__ handles creation of the class ;

__init__ handles initialization
• __new__ can be used to return instances

of entirely different classes if need be

Inheritance: Subclassing Built-Ins

Sub-classing immutable types requires
over-riding __new__ rather than
__init__ (example: positive int)

__new__ vs. __init__:
• __init__ must return None ; __new__

must return the object
• cls versus self as first parameter
• __new__ handles creation of the class ;

__init__ handles initialization
• __new__ can be used to return instances

of entirely different classes if need be

Recall: The Python Model

Everything is an object

At the end of the day, everything inherits
from object

isinstance(x, object) will always return True

Composition

An astronomical example: A solar system

Components: star, planets, moons, asteroids, comets

Composition

An astronomical example: A solar system

Components: star, planets, moons, asteroids, comets

Star

Satellite

Planet Moon Asteroid Comet

Planetary System

Solar System
Body

Composition: A Solar System

First pieces: the inheritance structure of
the solar system bodies. All solar system
bodies have a name and a mass, so we
put those in the base class.

Composition: A Solar System

First pieces: the inheritance structure of
the solar system bodies. All solar system
bodies have a name and a mass, so we
put those in the base class.

The star doesn’t need any more than this,
so we can let it inherit everything – even
the __init__ function.

Composition: A Solar System

First pieces: the inheritance structure of
the solar system bodies. All solar system
bodies have a name and a mass, so we
put those in the base class.

A satellite object also has a semi-major
axis and an eccentricity.

Composition: A Solar System

First pieces: the inheritance structure of
the solar system bodies. All solar system
bodies have a name and a mass, so we
put those in the base class.

A satellite object also has a semi-major
axis and an eccentricity.

Planets, moons, asteroids, and comets
don’t need any data beyond that.

Composition: A Solar System

Next: A planetary system composed of
a planet object and moons. This
requires no new syntax – these can be
properties of a new class.

Here the planet attribute is just the
planet object, and the moons is a list of
moon objects. Composition introduces
no new syntax - it just refers to
properties of a specific type.

Composition: A Solar System

Next: A solar system object
composed of a star, planetary
system objects, asteroids, and
comets.

Note: the __init__ function is
calling setter functions not
pictured here.

Composition: A Solar System

Next: A solar system object
composed of a star, planetary
system objects, asteroids, and
comets.

The planets attribute is a list of
planetary_system objects. The
asteroids and comets properties
proceed similarly.

Composition: A Solar System

The planetary_system and the
solar_system objects in action:

Composition vs. Aggregation

Composition differs in detail from aggregation – composition implies ownership whereas
aggregation implies usage – the two are often confused. Neither involve special syntax.

Consider a program with two objects: A and B
• Composition: A “owns” B, and B is destroyed when A is destroyed
• Aggregation: A “uses” B, and B is not destroyed when A is destroyed

Real world example: ammunition in a shooter video game
• If it’s dropped when you die, and another player can pick it up à aggregation
• If it’s not dropped when you die, instead disappearing from the game à composition

