
Multiple Inheritance
SURP 2022 Python Bootcamp

Ohio State Astronomy 
Slides by: James W. Johnson



What is it?

When an object inherits functionality from more than one base class 

Objectives 
• The basic syntax 
• The method resolution order 
• A simple example: A piece-wise function 



The Basic Syntax 

By definition, at least 2 classes to 
inherit from are required 



The Basic Syntax 

By definition, at least 2 classes to 
inherit from are required 

Where you already specify the class to 
inherit from with single inheritance, 
add any additional classes! Simple, 
right? …right?



The Basic Syntax 

By definition, at least 2 classes to 
inherit from are required 

Where you already specify the class to 
inherit from with single inheritance, 
add any additional classes! Simple, 
right? …right?

Unfortunately, multiple inheritance sort 
of breaks super



The Method Resolution Order 

When you call a function within a class, it 
looks first within that class, then the first 
parent class, then the second parent class, 
and so on 

Any call to super is a call to classes further 
down the MRO

• This has been true all along for single 
inheritance too! 

• With multiple inheritance, super may not 
always do what you want



The Basic Syntax

Instead, invoke the inherited class 
directly and pass self as the first 
argument

• This takes advantage of the fact that 
x.function(y) is equivalent to 
classname.function(x, y)



Example: A Piece-Wise Function

The two base classes 
• exponential describes a classic e-

folding function 
• sinusoid describes a sine or cosine 

function



Example: A Piece-Wise Function 

The two base classes 
• exponential describes a classic e-

folding function 
• sinusoid describes a sine or cosine 

function

Invoking the inherited class directly 
can also be used to write the 
__call__ function (or any function 
for that matter) 



The Method Resolution Order in Action 

Replaced the body of the __call__
function with a simple call to super



The Method Resolution Order in Action 

Replaced the body of the __call__
function with a simple call to super

Now it’s only calling 
exponential.__call__

If exposinusoid inherited from 
sinusoid first, this would find 
sinusoid.__call__ instead 



Footnotes 

In some specific instances, super is smart enough to make sure all inherited classes’ 
__init__ functions get called 

• Example: “diamond inheritance” (B and C inherit from A, D inherits from B and C) 

“Mixin” classes – designed for multiple inheritance 
• Generally implement only one function each, then “mix” them by inheriting from multiple 
• Conventionally have names ending in -Mixin



Footnotes 

Developers often argue that multiple inheritance is bad practice
• This really only means it should be used sparingly, when no other options are available 

Advice: Don’t be afraid to use it when it offers a concise, readable solution 
• …but only if the single inheritance version is noticeably less so 
• Avoid super – it sacrifices readability. “Explicit is better than implicit.” 

• With this approach, changing functionality requires changing the lines that implement that 
functionality, which means it’s good code.


